您现在的位置: VOA美国之音 >> VOA双语新闻 >> 双语新闻 >> 正文


更新时间:2020-2-8 10:54:41 来源:本站原创 作者:佚名 浏览:

How Many Computers to Identify a Cat? 16,000

MOUNTAIN VIEW, Calif. — Inside Google’s secretive X laboratory, known for inventing self-driving cars and augmented reality glasses, a small group of researchers began working several years ago on a simulation of the human brain.


There Google scientists created one of the largest neural networks for machine learning by connecting 16,000 computer processors, which they turned loose on the Internet to learn on its own.


Presented with 10 million digital images found in YouTube videos, what did Google’s brain do? What millions of humans do with YouTube: looked for cats.


The neural network taught itself to recognize cats, which is actually no frivolous activity. This week the researchers will present the results of their work at a conference in Edinburgh, Scotland. The Google scientists and programmers will note that while it is hardly news that the Internet is full of cat videos, the simulation nevertheless surprised them. It performed far better than any previous effort by roughly doubling its accuracy in recognizing objects in a challenging list of 20,000 distinct items.

这个神经网络自主学习识别猫儿的方法, 说实在的,这可不是什么琐碎无聊的举动。本周,研究人员将在苏格兰爱丁堡的一次会议上展示自己的研究成果。谷歌科学家和程序设计员将会说明,虽然互联网上充满猫儿视频的事情已经不再是什么新闻,模拟的结果还是让他们大吃了一惊。这个系统在20000个不同物体里识别目标物的精确度大致上提高了一倍,远远高于以往的任何一次同类实验。

The research is representative of a new generation of computer science that is exploiting the falling cost of computing and the availability of huge clusters of computers in giant data centers. It is leading to significant advances in areas as diverse as machine vision and perception, speech recognition and language translation.


Although some of the computer science ideas that the researchers are using are not new, the sheer scale of the software simulations is leading to learning systems that were not previously possible. And Google researchers are not alone in exploiting the techniques, which are referred to as “deep learning” models. Last year Microsoft scientists presented research showing that the techniques could be applied equally well to build computer systems to understand human speech.


“This is the hottest thing in the speech recognition field these days,” said Yann LeCun, a computer scientist who specializes in machine learning at the Courant Institute of Mathematical Sciences at New York University.

在纽约大学库兰特数学科学研究所(the CourantInstitute ofMathematical Sciences at New York University)从事机器学习技术研究的计算机科学家严恩·勒坤(YannLeCun)说:“现在这是语音辨识领域最热门的事。”

And then, of course, there are the cats.


To find them, the Google research team, lead by the Stanford University computer scientist Andrew Y. Ng and the Google fellow Jeff Dean, used an array of 16,000 processors to create a neural network with more than one billion connections. They then fed it random thumbnails of images, one each extracted from 10 million YouTube videos.

为了找到猫,由斯坦福大学(StanfordUniversity)的计算机学家安德鲁·吴(Andrew Y. Ng)和谷歌员工杰夫·迪安(Jeff Dean)领导的谷歌研究小组用16000个处理器建造了一个神经网络,这个网络有10亿多个连接点。随后,他们向这个系统随机提供从1000万个YouTube视频中截取的缩略图,每个视频截取一张。

Currently much commercial machine vision technology is done by having humans “supervise” the learning process by labeling specific features. In the Google research, the machine was given no help in identifying features.


“The idea is that instead of having teams of researchers trying to find out how to find edges, you instead throw a ton of data at the algorithm and you let the data speak and have the software automatically learn from the data,” Dr. Ng said.


“We never told it during the training, ‘This is a cat,’ ” said Dr. Dean, who originally helped Google design the software that lets it easily break programs into many tasks that can be computed simultaneously. “It basically invented the concept of a cat. We probably have other ones that are side views of cats.”


The Google brain assembled a dreamlike digital image of a cat by employing a hierarchy of memory locations to successively cull out general features after being exposed to millions of images. The scientists said, however, that it appeared they had developed a cybernetic cousin to what takes place in the brain’s visual cortex.


Neuroscientists have discussed the possibility of what they call the “grandmother neuron,” specialized cells in the brain that fire when they are exposed repeatedly or “trained” to recognize a particular face of an individual.


“You learn to identify a friend through repetition,” said Gary Bradski, a neuroscientist at Industrial Perception, in Palo Alto, Calif.

“只有通过不断重复,你才能记得朋友的长相,”加利福尼亚州帕洛阿尔托“工业知觉”(IndustrialPerception神经系统科学家加里·布拉德斯基(Gary Bradski)说。

While the scientists were struck by the parallel emergence of the cat images, as well as human faces and body parts in specific memory regions of their computer model, Dr. Ng said he was cautious about drawing parallels between his software system and biological life.


“A loose and frankly awful analogy is that our numerical parameters correspond to synapses,” said Dr. Ng. He noted that one difference was that despite the immense computing capacity that the scientists used, it was still dwarfed by the number of connections found in the brain.


“It is worth noting that our network is still tiny compared to the human visual cortex, which is 106 times larger in terms of the number of neurons and synapses,” the researchers wrote.


Despite being dwarfed by the immense scale of biological brains, the Google research provides new evidence that existing machine learning algorithms improve greatly as the machines are given access to large pools of data.


“The Stanford/Google paper pushes the envelope on the size and scale of neural networks by an order of magnitude over previous efforts,” said David A. Bader, executive director of high-performance computing at the Georgia Tech College of Computing. He said that rapid increases in computer technology would close the gap within a relatively short period of time: “The scale of modeling the full human visual cortex may be within reach before the end of the decade.”

佐治亚理工学院计算机系(Georgia Tech College ofComputing)高性能计算系统实验室执行主任戴维·巴德(David A. Bader)表示:“和原来相比,斯坦福和谷歌的研究报告把神经网络的规模上限提高了一个量级。”他说,计算机科技的迅速发展会在相对较短的时期内缩小电脑和人脑的差距。“在这个十年结束之前,整个儿地模拟人类视觉皮质也不是不可能的事情。”

Google scientists said that the research project had now moved out of the Google X laboratory and was being pursued in the division that houses the company’s search business and related services. Potential applications include improvements to image search, speech recognition and machine language translation.


Despite their success, the Google researchers remained cautious about whether they had hit upon the holy grail of machines that can teach themselves.


“It’d be fantastic if it turns out that all we need to do is take current algorithms and run them bigger, but my gut feeling is that we still don’t quite have the right algorithm yet,” said Dr. Ng.